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Abstract

An inverse heat conduction problem in a system is solved using a non-integer identified model as the direct model for
the estimation procedure. This method is efficient when some governing parameters of the heat transfer equations, such
as thermal conductivity or thermal resistance, are not known precisely. Reliability of the inversion depends on the
precision of the identified model. From considerations on the analytical solutions in simple cases and on the definition
of non-integer (or fractional) derivative, the non-integer model appears to be the most adapted. However, some ex-
periments do need to be carried out on the physical thermal system before it can be identified. An application that
consists in estimating the heat flux in a turning tool insert during machining is presented. First, identification is per-
formed using a specific apparatus that permits a simultaneous measurement of temperature and heat flux in the insert.
Then, during machining, heat flux can be estimated from temperature using this identified model. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Let us consider a system £, eventually constituted
from several sub-domains 0Q and submitted to a heat
flux ¢(¢) on a part I' of its external surface (Fig. 1).
Solving the inverse heat conduction problem consists in
estimating the heat flux ¢(¢) from temperature mea-
surements in the system. As we consider a single heat
flux, only the temperature 7(P, ¢) in the body at point P
along the time is necessary. Obviously, reliability of the
estimation of ¢(¢) is better considering the smallest
distance between the point P and the external surface I,
where the heat flux is applied.
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A model, that expressed the heat flux ¢(¢) according
to the temperature 7'(P,f) along the time, is also
necessary in the procedure for the resolution of the in-
verse problem. This model is classically issued from the
governing equations of transient heat transfer and as-
sociated boundary conditions. According to the com-
plexity of the system, several parameters need to be
known in order to solve these equations. These can be
the thermal conductivity or the specific heat of materials
that enter into the constitution of the sub-domains. On
the other hand, thermal resistances between the sub-
domains are much more difficult to estimate than ther-
mophysical properties.

In face of such difficulties, another approach can be
considered. It consists in identifying the relationship
between the heat flux ¢(¢) and the temperature T'(P, ) by
applying a known heat flux, like a step for example, and
measuring the temperature at point P. The most inter-
esting model is the impulse response since it can be di-
rectly used in the procedure of inversion. Unfortunately,
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Nomenclature

a;, b; coefficients of the non-integer model

A modal coefficient

a, depth of cut (mm)

Gy specific heat (J kg™' K1)

e output error

f feed rate (mm tr—!)

F(s) Laplace transfer function

h sampling period

1(¢) impulse response

J quadratic criterion

Jo gradient

Joo hessian

M number of data

n common real order of the non-integer
model

ng, ny,  differentiation orders of the non-integer
model

qi heat source in region i

r number of future time steps

s Laplace variable

S(¢,4,) output sensitivity function with respect to
A

t time

T(P,t)  temperature at point P and time ¢

T(P,s) Laplace transform of T(P,¢)

T(Kh,0) calculated temperature

|8 cutting speed (m s™)

Y measured temperature at point P
z; roots of the polynomial function
N(s")=0

Greek symbols

o thermal diffusivity (m? s™')

%, B, coeflicients of the identification model
(1) heat flux

o(s) Laplace transform of ¢(¢)

r part of external surface of Q
) thermal conductivity (W m~! K™')
A eigenvalues of the non-integer model

(relation (7))

physical system

sub-domain of Q

vector of unknown parameters
vector of estimated parameters
optimal value of 6

density (kg m™)

Marquardt parameter

{O{O

J‘mb?@>®@)
=1

Subscripts
i, j, k, [ iteration subscripts
j imaginary unit (1/(—1))

Other symbols

D = d/dt differential operator

E estimator

L' inverse Laplace transform operator
* convolution product

this kind of response is generally difficult to obtain for
two reasons. The first concerns the difficulty in gener-
ating and measuring a homogeneous pulse over the
surface I'. The second refers to the reproducibility of this
response, this means that a great dispersion can be
found in the results considering successive trials.

b0 ; 0={ 580, UsQ, U dQ, }

5Q,

Fig. 1. System constituted by sub-domains 0Q,. Temperature
T(M,t) at point M is measured in order to estimate the un-
known heat flux ¢(¢) along the time.

For these reasons, it is preferable to excite the system
with a measurable random heat flux. Such a signal en-
sures redundant measurements especially for the small
time where computation of the impulse response re-
quires the most important precision. Assuming linear
heat transfer in the system, the lagging effect leads to
naturally express the model under the following discrete
time form:

T (P,Kh) + oy T(P,(K — 1)h) + -+ o, T(P, (K — I)h)
= Bop(Kh) + B1p((K — 1)h) + -+ B,¢((K = J)h),
(1)
where the continuous time has been decomposed into
(M — 1) intervals, & being the sampling period. Then,
T(P,Kh) and ¢(Kh) are, respectively, the temperature at
point P and the heat flux at time ¢t = Kh (0 <K < M).
Parameters to be estimated are o (0<i</) and
B; (0<j<J). The continuous time representation of
such a relationship is
aD")T(P,t) + -+ ;D" T(P,1)

= boD"™) (1) + - - + b, D) (7). (2)



J.-L. Battaglia et al. | International Journal of Heat and Mass Transfer 44 (2001) 2671-2680 2673

The differentiation orders are (n,, . ..,n,) = (0,1,...,1)
and (ny,...,m,) =(0,1,...,J), and D denotes the dif-
ferential operator {d/d¢}. If one considers a zero initial
temperature at point P, the Laplace transform of re-
lation (2) leads to the transfer function F(s) as

T(P,s) Fs) by +bis+---+bys
— = =F(s) =
(s) ay+ays+ -+ aps’

3)

with T(P,s) = [;° T(P,#)e™dt and $(s) = [;° $p(t)e > dt

From recent works [1], we have shown that a more
appropriate form of the relationship is obtained con-
sidering real (integer or non-integer) differentiation or-
ders (ngy,...,M4,Npys---,np,) in relation (2). The
fractional derivative, introduced by Riemann and Liou-
ville in 1831, is a generalization of the classical definition
of the derivative [2,3]. It has been recently used in several
applications in the domain of automatic (robust control
an identification [4,5]). Thus, the model expressed by the
relation (2) is often called a non-integer model.

Oldham and Spanier have proved that the Laplace
transform for fractional derivative is a generalization of
the usual one applied for integer derivative. Then, re-
lation (3) is still valid and exponents of the Laplace
variable s are then real.

Let us consider a very simple configuration where the
system is homogeneous (thermal conductivity 4, density
p, specific heat C,) semi-infinite and point P is located
on the surface I'. The expression of the transfer function
is [1]

_ T(0,s) _ 1 112
P(s) VApCy .

In the continuous time-domain this relation corresponds
to

D'27(0,1) =

)

1
t). 5
It is clear that the derivative of T(0,¢) is of real order
and equal to 0.5. If one considers the point P at the
abscise x inside the medium, a similar result is obtained,
using series expansion technique, as

%)

nl/2

Lyt ©)

n=0

S
)
-::Q T

In this case, the exponents of s are multiples of the real
value 0.5. Oldham and Spanier [6-8] have demonstrated
that such a real value is obtained considering semi-infi-
nite planar, cylindrical and spherical geometric config-
urations. On the other hand, it does not change applying
a prescribed temperature on the surface of the medium
instead of a prescribed heat flux. In the case of finite

domains, the series expansion technique allows the
transfer function to be expressed as in relation (6) where
the exponents of s are multiples of 0.5. Obviously, this
result is only valid in the field of heat transfer by diffu-
sion.

In this paper, the estimation method of the non-in-
teger model parameters is presented. The identified
model is then used to compute the impulse response of
the system in order to solve the inverse heat conduction
problem. The procedure of inversion is based on the
classical sequential function specification method de-
veloped by Beck et al. [9].

An application is treated that consists in estimating
the heat flux in a tool during machining by turning.
First, a specific experiment that permits to apply a
known heat flux at the tip of the tool is realized. A non-
integer model is achieved from these measurements and
the impulse response is computed. Then, the heat flux is
estimated during real machining. A constant heat flux
functional form is used in the procedure of sequential
estimation.

2. System identification
2.1. Presentation and numerical calculation

In the model described by relation (2), real values of
the differentiation orders are considered. The model is
used to express the temperature in the system according
to the heat flux. A common real order n can be
determined such that all differentiation orders (n,, ...,
gy, My, - - -, Mp,) can be expressed as the product of n by
an integer. The transfer function corresponding to the
differential equation (2) is thus

T(P7 S) . bN,1S<N71 " -+ by - N(Sn) (7)
a(s) a shn + aN,IS(N Dn "4t ag D(Sn) ’

where n is the common real differentiation order and
N(s") and D(s") are the two polynomial functions of the
s" variable.

The identification model used here results from a
breakdown of the previous non-integer rational transfer
function into partial fractions. Under this form, called
developed modal form, the temperature is a linear com-
bination of several modes, (called eigenmodes in the field
of automatic control). Each mode is characterized by
three parameters: the modal coefficient, the eigenvalue
and the differentiation order, and provides its own spe-
cific dynamic contribution to the response of the system.
The developed modal form of the relation (7) is ex-
pressed therefore as

N

T(P.s) = B(s) = S T(s). (8)

n o __
= S ! 1=
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The corresponding factorized modal form is thus

B Aﬁ(s" _Zl),
T(P,s) = ————(s), )
g(s" — /L])

where z; are the roots of N(s") = 0.

The aim of identification is to estimate vector 6 de-
fined by the model parameters: 8T = [n,A1, A1, ... An, Av]
[10].

In practice, the fractional derivatives are replaced by
their discrete approximation, considering a constant
sampling period / (see Appendix A for the demonstra-
tion), namely

hlio V()7 = om) (10)
with
<Z>:n(n—l)~-l~€!(n—k—0—1)7 nER. (1)

Then, considering an estimate 0 of 6, the calculated
temperature 7(Kh,0) at point P and at time ¢ = Kh, is
computed from the following recursive equation system:

' — Th(s) = ( ) (K — K)h)
k=
— ATy (Kh) = 4,¢(Kh)
(12)

T(Kh,0) = Ti(Kh). (13)

2.2. Model order reduction

The non-integer model can be expressed under three
equivalent forms: the rational transfer function in s”
(relation (7)), providing the various differentiation or-
ders; the developed modal form (relation (8)), providing
the eigenvalues; and the factorized modal form (relation
).

A critical choice in the identification procedure con-
cerns the number N of eigenmodes in relation (8). For
this, the modelization error, which is defined by the
norm of the gap between the responses of the identified
model and the real system, is introduced. Starting from a
specific number N, this error does not significantly get
decreased when increasing N. It comes from the fact that

the response of the real system contains measurement
noise and consequently leads to a value of z; close to an
eigenvalue A, within their confidence intervals. Thereby,
this eigenmode can be rejected and a model reduction is
obtained.

2.3. Model parameter estimation

2.3.1. Output error identification algorithm

The sampled data set is composed of M data pairs
[p(Kh),Y(Kh)] 1<K<M and h being the sampling
period) where Y denotes the measured temperature at
point P. The output error is given by

e(Kh,8) = Y(Kh) — T(Kh, 0). (14)

Now 0,5, the optimal value of 6, is obtained by mini-
mization of the quadratic criterion

0) = iez(Kh,é). (15)

K=1

As output prediction T'(Kh, 6) is non-linear with respect
to 0, a non-linear programming technique, in this case

the Marquardt algorithm [11], is used to estimate 0
iteratively

1
0, =0,— { {Jg‘, + fl] Jg} (16)
0=0,
with
—237%, e(Kh)S(Kh, 0) gradient
Jge ~ 23 % S(Kh,0)ST (Kn,0) hessian

S(Kh,0) = (0T (Kh,9))/00 output sensi-
tivity function
¢ Marquardt

parameter

This algorithm, often used in non-linear optimization,
ensures robust convergence, even when 0 is initialized at
a value far from the true value.

2.3.2. Output sensitivity computation

The identification model structure makes output
sensitivity computation easier. By partial differentiation
of output prediction, we obtain

(i) = T (sn ! /1[) « 1),
ste 1) = 0 L(&) (1),
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where * and L™, respectively, denote the convolution
product and the inverse Laplace transform.

Using the non-integer derivative discrete approxi-
mation (10), (87(z,0))/d4, and (37 (z,0))/d2, are easy to
compute. Due to the In(s) term, computation of the
(07'(¢,0))/0n is more complicated and is given in Ap-
pendix B.

The three sensitivity functions are linearly indepen-
dent. This means that the identification of ® can be
performed efficiently.

2.3.3. Confidence domain of the estimated parameters
Under the classical assumptions of zero mean and

constant variance ¢ of the prediction error [12,13], the

estimated parameter covariance matrix is given by

cov(@op) = 02(iS(Kh,Gopt)ST(Kh,OOmO_ . (18)

K=1

Using this matrix, the parameter variances (on the ma-
trix diagonal) and the correlation coefficients between
parameters can be easily computed.

A classical estimator of ¢° is given by

E(e?) = i s (), (19)

3. Resolution of the inverse heat conduction problem

As in the previous chapter, Y denotes the tempera-
ture measured during machining at point P. Let us
compute the impulse response [(Kh)(K =1,...,M)
from the identified model with the optimal parameters
0,p. Using initial temperature 7y(P) at point P, and the
convolution theorem

T(P,Kh) Z[ K — [+ 1)h)p(Kh) + Ty(P), 20)

I1<K<M.

We assume a constant heat flux functional form from K

o (K +r—1), where r is the number of future time
steps, usually chosen to be about 3 or 4. Then substi-
tuting

$(Kh) = (K + 1)h) =

in relation (20)

=¢((K+r—1)h) (21)

T(P,Kh)
T(P,(K + 1)h)

= dh¢(Kh) + T(P,Kh)
= dhyp(Kh) + T(P, (K + 1)h)
(22)

T(P,(K +r—1)h) = dh,¢(Kh) + T(P, (K +r — 1)h)

with
dh; = i](ih) (23)
and _

T(P,(K+j—1)h KZII (K +j — Dh)$(Ih) + Ty(P)

1<j<r. (24)

The least-squares procedure for estimating ¢(Kh), with
the temperature measurements Y (Kh), Y((K + 1)h),...,
Y((K + r — 1)h), minimizes

S= Z

(K +j—=1h) =T(P,(K+j—1Dh)’,  (25)

which is differentiated with respect to ¢(Kh). Now
0S/(0¢(Kh)) is set equal to zero, and ¢(Kh) is replaced
by the estimate, providing

_ X (YK +j = 1)) = T(P, (K +j — 1)h))dh, .

(26)

The sequential procedure for estimation consists first in
calculating di; and T(P, (K + j + 1)h) for 1 <j <r from
relations (23) and (24). The heat flux at time ¢t = K is
then estimated from relation (25). Finally K is increased
by one and the procedure is repeated till K = M.

4. Application

In turning (see Fig. 2), tearing of the material from
the workpiece as a chip comes from the cutting between
the tool insert and the cylindrical.

Assuming the tool insert is not affected by the cutting
process, three specific regions appear to be concerned
with the heat generation in the material cut as it is de-
scribed in Fig. 3 (see also [14,15]). Heat source ¢; in
region 1, known as the primary shear zone, comes from
plastic deformation and viscous dissipation. Heat source
¢» in region 2, known as the secondary shear zone, is
located at the tool-chip interface where the heated chip
slides on the insert top surface. Finally, the last region,
denoted as region 3, refers to the tool-workpiece inter-
face where frictional rubbing of the workpiece on the
tool insert flank leads to the heat source ¢;. This last
heat source exclusively depends on the tool wear. Each
of these three heat sources contributes to the heat flux
through the tool denoted ().

We now use our method to estimate the heat flux ¢(¢)
in the tool during real machining.
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workpiece

Tool insert
Tool holder

Fig. 2. Schematic representation of a turning process. The three
parts of the system are the tool (tool insert and tool holder), the
chip and the workpiece.

Chip

Primary
deformation
zone

tool

workpiece rubbing zone

Fig. 3. Heat transfer in a cutting process. Three heat sources
are ¢, ¢» and g3 that contribute to the heat fluxes ¢,,, ¢, and
¢,, respectively, in the workpiece, the chip and the tool.

4.1. Material and experimental design

For the model identification stage, the user needs to
measure simultaneously: the temperature Y(¢) using a
thermocouple embedded close to the tip of the insert,
and the heat flux ¢(¢) through the tool. However, heat
flux ¢(¢) cannot be measured during the turning process.
A specific experiment has been designed which permits
the heat flow to be measured (Fig. 4). A constantan wire
is wound around the tip of the insert and serves as a heat
resistor. The heat flux ¢(¢) is equal to the electric power
provided to the resistor. The resistor is covered by an
insulating material to make sure that the total heat flux
generated by the resistor goes through the tool. The
temperature Y(¢z) is measured using a thermocouple

Heat resistor (¢, (1)

) Thermocouple 2
-~ Thermocouple 1 (¥(1)) (7,®)

Fig. 4. Tool with embedded thermocouples and heat resistor
simulating the thermal behavior at the tip of the insert in a
cutting process. The length of the tool insert covered by the
winding is e = 3 mm from the tip. Distance of the thermocouple
from the tip of the insert is £=8 mm.

placed under the insert mounting screw at 0.8 cm from
the tip of the insert.

A SANDVIK COROMANT TNMG 16 04 08-23 uncoat-
ed carbide insert is used. A type K (chromel-alumel)
thermocouple with a sensitivity of 40 pV/°C is used with
a compensator for fluctuation in ambient temperature.

The electrical power is provided by a stabilized
electrical supply. A Vishay conditioning amplifier (gain
3000) amplifies the signals from the thermocouple.
Finally, a Nicolet type 310 is used for the data acquisi-
tion of ¢(¢) and Y(¢).

4.2. Model parameter estimation

The apparatus is now used to identify the thermal
system. Since variances of the parameter estimates de-
pend on the covariance function of the input signal, a
pseudo-random binary signal (PRBS) input current is
provided. This permits an efficient fitting of the model
T(1,0 = 0, with the experimental temperature values
Y(¢) for a wide-frequency band. It must be stressed that
the identified model is not necessarily valid if the turning
process duration is longer than that of the identification
experiment. This means that the duration of the input
signal at the identification stage must be longer than the
expected turning process duration.

A 2000 input-output data set was sampled at
h=0.1s. The sampling period must be chosen quite
short for reproduction of the dynamic behavior of the
system to be faithful even at high frequencies. The
identification model used is composed of three eigen-
modes and therefore seven parameters. Table 1 gives
estimation results and Fig. 5 illustrates the identification
performance. The temperature predicted by the non-
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Table 1

Estimated parameters (d4;, 4;, n) along with their standard deviations (o(4;), o(4;), a(n)) and corresponding parameters

(ai, bi, ng, ny,) in the rational form of the continuous model

Mode 1 Mode 2 Mode 3 Order
A; = —0.8323 — j0.6839 A, = —0.8323 4+ j0.6839 Az = 1.7041 n = 0.5463
A = —0.06364 + j0.3379 A = —0.06364 —j0.3379 A3 = —0.48637
=0.0033 +j0.0144 a(A4;) = 0.0033 + j0.0144 a(43) = 0.0065 o(n) = 0.0027
= 0.0035 + j0.0025 a(Z1) = 0.0035 + j0.0025 a(43) = 0.0068

b0:0374} {

=-0236) by =0.0393
np, = 0.546 [\ ny, = 1.0927

00575 a; = 0.1801 a, =0.613 a =1
"\ ey = 0.546 [\ 1y = 1.0927 7 gy = 1.639

3.0 1 1.0
measured temperature
1 09
25 | calculated temperature
residues x 10 1os
heat flux
20 b ) . 107
~ 4 ‘K
) /
S st | 06 &
g \, :
= 1052
1 =
2 o0t 2
g 1042
=
0.5 0.3
0.2
0.0
0.1
-0.5 0.0
0 50 100 150 200

Time (s)

Fig. 5. Temperature measurements Y(¢) and calculated tem-
peratures T'(¢) for a wave sequence of ¢(¢), residues are denoted
as e(t).

integer model is almost identical to the real temperature
and the two traces cannot be seen as separate.

As it was mentioned previously, confidence domains
of the identified parameters are calculated assuming a
zero mean output error. In order to justify this as-
sumption, the autocorrelation function of the residues is
plotted in Fig. 6. As one can see, the mean of the
autocorrelation function is close to zero but a bias oc-
curs. This bias comes from the modelization error that
grows when the number of parameters in relation (8)
decreases. Thereby, the residues are not only constituted
by the measurement errors but also by the modelization
error.

When more than three eigenmodes were chosen, the
model reduction brought the number back to three.
This means that the modelization error cannot yet be

0.20

0.15

0.10

0.05

Autocorelation of the residues

-0.05

-0.10 -
0 50 100 150 200

Time (s)

Fig. 6. Autocorrelation function of the residues e(¢) for vali-
dation of white noise measurements.

significantly minimized. As it can be viewed in Fig. 7,
the sensitivity functions for each parameter are of the
same magnitude. This result permits the confidence
domain of each estimated parameter to be of the same
magnitude.

In order to validate the identified model, we repeat
the experiment replacing the random input signal by a
step of heat flux (Fig. 8). As one can see, the calculated
temperature is very close to the experimental results.
This confirms the reliability of the identified model and
the weak modelization bias.

4.3. Estimation of ¢(t) in a cutting process

The previous identified non-integer model is then
used in the procedure for the estimation of the heat flux
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10.0

SAT) --ne- Sy o IG(AD)  m—(12)

o 1S(A3) §(18)  wmmssmS(n)

sensitivity functions S

0 50 100 150 200
temps (s)

Fig. 7. Sensitivity functions of the estimated parameters cal-
culated from their analytical expressions.

37 405
4 0.5
2.5
-
404
2
404
QC 154 measured temperature
< 103 &
F- A I A calculated temperature 9
g -
g1 {038
£ resiues x 10 ]
2 )
E 2
£ step heat flux 1023
o 0.5
=
402
[ E—
401
-0.5 4
4 0.1
! 0.0
0 50 100 150 200
Time (s)

Fig. 8. Validation of the identified model on the experimental
step response of the system.

during a turning process. The turning parameters are:
cutting speed V. = 90 m/s, feed rate / = 0.3 mm/tr and
depth of cut a, = 2 mm. The workpiece is made of steel
42CD4, 35 mm is the diameter before cutting.

The impulse response is first computed using the
previous identified model. The estimated heat flux and
experimental values of the temperature Y(¢) are rep-
resented in Fig. 9. The sampling period is # = 0.5 s and
M =160 is the number of data. The number of future
time steps has been taken as equal to r = 4.

The computation times are less than 2 s on a PC
Pentium IIT 450 MHz.

140 - 1%
»»»»»» Measured temperature

120 L Estimated heat flux 425

100 ~

60

Temperature (°C)
s
(A\) XN JedYy pajewnsy

0|

20 ;

0 10 20 30 40 50 60 70 80
Time (s)

Fig. 9. Estimation of the heat flux in the tool during machining
from the non-integer identified model. Number of future time
steps is r=4.

5. Conclusions

The use of a non-integer identified model as the direct
model for the resolution of the inverse problem offers
some specific advantages. First, the knowledge of ther-
mophysical properties, such as thermal conductivity or
specific heat, is not required. Likewise, those concerning
thermal resistance and stationary boundary conditions
that have no interest for the user. Secondly, the identi-
fication method does not depend on the spatial diffusion
of heat in the medium. In other words, one-dimensional
or three-dimensional diffusion requires the same com-
putational time for the model identification.

On the other hand, it has been viewed in the intro-
duction that considering a real differentiation order is in
physical agreement with the analytical solutions found
in various geometric configurations. Furthermore, all
the differentiation orders are multiples of a single one.
This result leads to a meaningful reduction in the
number of unknown parameters in the expression of the
transfer function in the form of relation (7). Concerning
the resolution of the inverse problem from the identified
model, relation (10) shows that the fractional derivative
of a function at time ¢ involves all the past of this
function till the initial time ¢ =0. The inversion pro-
cedure takes a great benefit of this fact.

The principle weakness of this approach is that the
estimated flux and temperature depend in the first place
on the reliability of the identified models. Thereby, a
great precision had to be put on the experimental lab-
oratory design at the stage of model identification. On
the other hand, the duration of the process cannot ex-
ceed the duration time for the model identification.
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Finally, concerning the application, the heat flux in a
tool, ¢(¢) has been estimated from temperature mea-
surements, T'(P,¢), in an interior point of the insert tool
during machining by turning. The direct model that
expressed ¢(¢) according to T(P,t) has been identified
from a specific apparatus. The inverse problem has been
solved using the sequential method. The computation
times for the estimation of the heat flux in the tool are
very small compared to the duration of the process.
Thereby, as it was envisaged by Oxley [16], the model
can be used in the application of an adaptive control of
the cutting temperature.

Appendix A. Fractional derivative of the function f (t)

By definition the derivative of the function f(¢) is

le(l) :}'lil(l)f(t) 7;1[(1‘7}1).

Using a sampling interval /1 of the time ¢, i.e., t = Kh,
lead to

F(KR) = f((K = D)

D1 = ;

Introducing the operator q defined by
g ' f(Kh) = f((K — 1)h) one obtains

—1

D'f (1) = —1—f(Kh).

The same calculus is achieved at the order 2
1—¢')

() =L rn),

The generalization to any order (real or complex) is
immediate

- 1— —1\n )
o0 =1 rn),
where n is real or complex.

Developing (1 —¢!)" from the Newton binomial

formulae gives

D'/ (1)

IRYES inn—=1)---(n—k+1) -

=0 (Z( -1 o )f(Kh)
Since g *f(Kh) = f((K — k)h) = f(t — kh), an other

representation of the fractional derivative is

D'/ (1) :hl,,i kn(nfl) k'(nikJrl)f(Z—kh).
=

Considering /() = 0 for t < 0, one has f(t — kh) = 0 for
t —kh < 0. Thereby the infinite sum in the previous
equation reduced to

1 & —1) —k+1
=031 ye e k!(” D - k).

k=0

Appendix B. Model output sensitivity with respect to n

The output sensitivity with respect to n is defined by
oT(1,0) L 45" In(s)
-L -2 o)
On 12:1: (s — )

_ /XNI: AL [Gl (s, 6)] (1)

Using the Euler approximation, s = (1 —z"')/h, the Z
transform corresponding to G (s, 0) is

Gr(z,) = (1—zY/k)" In((1 —z)/h)
T (U= =20 (L =) by + 22

The Newton binomial allows the non-integer derivatives
to be expressed by integer series expansion

G1(z,6>
{i(_h"l)k (Z)Z"‘} [—1In(h) +1In(1—z")]
SET () s GO (Do

k=0

Integer series expansion of In(1 —z!) gives then

Gi(=) = Lf;(”"l)k (Z)Zk} [‘ln(hrki%k]

e (0) )]s

k=0

Finally, assuming that the system is relaxed at r =0, a
recursive equation system can be established

{i{l (2n)_2xl (”)](_1)%,—@12 oy, (kn,0)
n n 1
el \ k)" \k

on

= {2::(_}!3) <Z)qk:| [ln(h) % u(Kh)

where ¢! is the backward shift operator (unit time delay
operator).
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